
Relation Oriented Programming with Raloo

What Happens When ::ral meets ::oo?

Andrew Mangogna

15th Annual Tcl/Tk Conference
October 20-24, 2008
Manassas, Virginia

Relation Oriented Programming

● Raloo is a Tcl script package that implements a
form of Relation Oriented Programming.

● Raloo combines:
– TclRAL ⇒ relation values, relvars, integrity

constraints, relational algebra operations
– TclOO ⇒ classes, objects, methods, OO building

blocks
● Raloo emphasizes:

– Strong data structuring via relations
– Event driven state machines for sequencing

processing
– Tcl code for algorithmic processing
– Domains for packaging subject matters

Raloo Combines TclRAL with TclOO

● Raloo Classes are TclOO classes with object data
stored in a TclRAL relvar.

● Raloo objects reference tuples in the class relvar.
● Raloo relationships are TclRAL relvar

constraints. Referential integrity is checked
automatically.

● Raloo supports associating a state machine with a
Class for asynchronous processing.

● Processing is accomplished by ordinary Tcl code.

Three Projections of a Raloo Solution

● Relationally normalized class model.
– Classes
– Relationships
– Integrity constraints

● Finite state machine model of asynchronous
processing.
– Moore machine for active classes
– State machine dispatch uses Tcl event loop

● Object oriented Tcl code for processing.
– Methods for navigating the class model
– Methods for generating state machine events

One Button Microwave

● One control button
– Press button with door closed runs for 1 min.
– Press button while running adds a minute.
– Opening the door while running stops the oven and

resets the time.
● Usual safeguards apply

– Light must be on when the door is open or the
microwave tube is on.

– Microwave tube may only be on when the door is
closed.

One Button Microwave

Oven
* OvenId
 CookingTime

Lamp
* OvenId (R2)

Tube
* OvenId (R1)

R2 R1

1

1

1

1

lights
provides cooking
energy for

One Button Microwave - Classes
 Class Oven {
 Attribute {
 *OvenId int

 CookingTime int
 }
 Lifecycle {
••••••••
 State initialCookingPeriod {} {
 # 1. Set time for 1 minute
 my writeAttr CookingTime 1
 my generateDelayed 60000 TimeExpired
 # 2. Generate: Turn on light
 set light [my selectRelated ~R2]
 $light generate TurnOn
 # 3. Generate: Energize power tube
 set tube [my selectRelated ~R1]
 $tube generate Energize
 }
 Transition initialCookingPeriod - TimeExpired ->\
 cookingComplete
 Transition initialCookingPeriod - ButtonPushed ->\
 cookingPeriodExtended
 Transition initialCookingPeriod - DoorOpened -> \
 cookingInterrupted
••••••••

One Button Microwave Demo

Oven
User Interface

Domain

Oven
Management

Domain

Move Along, Nothing New Here

● Ideas behind Raloo are not new or original.
● Three projections of the problem space.

– Static structure encoded as a relation class model
– Dynamics encoded as a state machine
– Algorithms written in code
– Capture program structure declaratively

● Raloo execution semantics match those of
Executable UML.

● Raloo combines the foundations provided by
TclRAL and TclOO.
– TclRAL is a complete relational algebra
– TclOO is a set of object oriented building blocks

Where to Get Raloo

● Raloo and TclRAL are both free software:
– http://sourceforge.net/projects/tclral

● Requires TclOO (0.5.1).
● Requires Tcl 8.5 or better.
● Read the paper! Please. More examples,

explanation and references there.

http://sourceforge.net/projects/tclral

